
1

Structure

• Geometry representation principles

• Destiny character creation pipeline

• Artist feedback about workflows

• Deep manually-driven pipelines are error prone

• New representations using hardware tessellation

• Call to action: Make a better tessellator

• Call to action: A separable pipeline

The purpose of this presentation is to establish basic principles of geometry
representation in games, and to set goals for academia to develop new
representations and processes that improve our ability to generate content for
games.

For our research process, we conducted a survey of artists at our own studios as well
as representatives from other AAA game and film studios. We have summarized the
responses and will present that data here.

We will describe elements of our pipelines that we feel have potential for
improvement, and post-mortem attempts to use new content representations in our
games.

We will propose a hardware change that could improve our ability to utilize hardware
tessellation to enable new content representations in our games.

Finally, we will propose a new high-level model for 3D content generation where the
high-resolution asset is developed entirely separately from the real-time
representation.

2

[Destiny Logo] [COD Logo]

Given we both work at AAA game studios developing first person action games, we’re
going to focus on that perspective, but expect that that our conclusions transfer to
other situations.

3

Geometry: Principles

4

5

What is geometry?

✓ TRIANGLE MESH Authored geometry

✓ NORMAL MAP Geometry too small to affect the silhouette

✓ SPECULAR MAP Micro-facet geometry

Material represents geometry, and vice versa

We want to begin by establishing what 3D geometry is, in principle, from the
perspective of game content creation.

Authored triangle meshes are the most obvious geometry representation, but
aspects of material authoring are also geometry. For example, normal maps
represent geometry that is too small to author as triangles. Specular maps also
represent a statistical distribution of geometry at an even smaller scale.

The geometry of an object is actually a representation of the materials it is made of.
Likewise, a material is actually a representation of small geometric features.

In 3D content, geometry and material are a continuum, representing the physical
properties of an object at different scales.

6

Drawing l ines

When designing a 3D renderer, we draw a line in the sand - through the material /
geometry continuum. It’s chosen given the capabilities of the hardware and software,
and the desired level of detail.

7

Requirements drive authoring

• Content is authored to a spec defined by the hardware & graphics
engine

• This spec becomes a line in the material geometry continuum that is
very hard to move

• Can we break free of the trap?

This line dictates the requirements of the content creation pipeline. If content needs
to be scalable, multiple representations may need to be created. But once the
content is created, it is impossible to move the line.

Efficiency might improve if we could make the best choice for construction, and
derive the runtime representation(s).

8

Taxonomy

PropCharacter Environment

© 2016 Activision Publishing, Inc.

For the purpose of discussion, we divide geometry and material production into three
categories: characters, props and environment.

9

Taxonomy

PropCharacter Environment

Tens to hundreds Thousands Tens

© 2016 Activision Publishing, Inc.

Characters are produced on the order of tens to hundreds unique assets per title, are
rigged and animated extensively, and utilize discrete LOD.

Props are produced of thousands unique assets per title, sometimes have moving
parts, and also utilize discrete LOD.

The environment is a single continuous asset per scene, only animates in superficial
or highly scripted ways, but importantly requires continuous LOD. Typically there are
tens of levels or destinations in a game.

We chose to focus our attention on challenges in character and prop production-
environment challenges tend to be application specific, and already been given lots of
research attention.

10

Destiny Character Development Process

Let’s take a look at the development process for Destiny characters

11

Let’s look at an example of our character creation pipeline to create these friendly
fellas, the Vex Goblins, an alien race in Destiny (here seen rendered in game).

12

Here they are in action, stomping around their native Venus and shining their robot
eyes at us.

13

Character Pre-Production Process

In
cu

b
at

io
n

Design / Concept

P
re

-P
ro

d
u

ct
io

n
Block Model

Review Meeting

Grey Model
Review Meeting

Unblocked:
Mission and

Encounter Setup

Design

Unblocked:
Full Production

Animation

Animation

Unblocked:
Final Skinning

Facial Rigging

Rigging

Unblocked:
UV Layout, Tex.

High Res Model

In-Game Model

3D Art

P
ro

d
u

ct
io

n

At a high level character design process roughly fits three stages shown here –
incubation, preproduction, and production.

They break down into design/concept, block model, grey model explorations and
final production phases.

Each stage roughly corresponds to a set of people that are involved in making the
assets.

14

Character Pre-Production Process

In
cu

b
at

io
n

Design / Concept

During the first phase, design / concept, the designers, creative direction, art
direction, concept art and fiction representatives are all exploring the concept of a
particular character.

As the character goes through this phase, each review for its design at Bungie
includes stakeholders from concepts, 3D art (modeling, shading and texturing),
Animation and cinematics representatives, rigging, FX, and the corresponding
engineering owners) in order to understand the implication behind feasibility of
certain concepts.

Note that no actual work has been done on the character’s in-game assets at this
point: no modeling, texturing, etc. All of the discussion is done entirely with concept
art.

15

So here is an example of such concept work for this character design. Here’s an early
Vex sketch to explore this character’s silhouette, significant visual features (the eye,
the shape of the head, for example), and early proportions.

16

We start getting a sense for the proportions, materials, and rough idea of the concept
for their movement at this phase. We also get a feeling for the gameplay design for
these characters.

17

Character Pre-Production Process

In
cu

b
at

io
n

Design / Concept

P
re

-P
ro

d
u

ct
io

n

Once the concept phase completed, the concept art department moves on to a
different character, and the next phase starts. The concepts for this character are
locked.

Then preproduction phase begins.

18

Character Pre-Production Process

In
cu

b
at

io
n

Design / Concept

P
re

-P
ro

d
u

ct
io

n
Block Model

Review Meeting

During the first pre-production phase for an asset, the block model phase, a further
exploration loop begins for character design. This loop involves design
representative(s), 3D art (primarily the modeler), animation / cinematics and rigging
artists.

19

Character Pre-Production Process

In
cu

b
at

io
n

Design / Concept

P
re

-P
ro

d
u

ct
io

n
Block Model

Review Meeting

• Core proportions
• Silhouette
• Relative Scale
• Gameplay mechanics

The goal of the block model phase is to identify the core proportions of the character,
define its distinguishing silhouette, its relative scale in game, and, of course, the
gameplay mechanics.

20

Animation and Rigging

A note about animation and rigging – why are we talking about it in the geometry and
material representation challenges? Although these elements are not important for
static environment or props, they are paramount for character design

Modelers often iterate with riggers to adjust the model for the desired range
of animations
Character design incorporates visual concept as well as movement concept
At Bungie this is done during the grey model iteration loop before any
expensive work has been done on high resolution assets. The reason for that
is if, based on animation and rigging review, you realize that the characters’
proportions need to change, or its geometry needs to differ, these changes
are cheaper to implement (you don’t need to change the high resolution Z
brush model, rebake all the textures, or adjust all existing production
animation sequences at this point, none of that has been created).

21

Character Pre-Production Process

In
cu

b
at

io
n

Design / Concept

P
re

-P
ro

d
u

ct
io

n
Block Model

Review Meeting

The Vex Goblin, the little fellow we’re exploring here, went through several iterations
of the block model phases for Destiny with the help of concept art doing paint overs
the existing low res model to refine the overall silhouette shape. We also
investigated a knee shape that could bend backwards during the crouching defensive
state.

22

Character Pre-Production Process

In
cu

b
at

io
n

Design / Concept

P
re

-P
ro

d
u

ct
io

n
Block Model

Review Meeting

The actual block model looked like this in game. During the block model phase we
focus on:

• Defining the skeleton / bones for this character
• Creating low resolution polygon objects to represent character volumes for each

bone segment
• Testing that the silhouette is well defined and readable
• Using pose testing to identify range of motion

The most important thing at this stage is to define and lock down the core joint
positions and rough geometry mass-out for the character.

23

Character Pre-Production Process

In
cu

b
at

io
n

Design / Concept

P
re

-P
ro

d
u

ct
io

n
Block Model

Review Meeting

• Output: basic low-res model, basic rig
• DCC Tools: Maya / Max

At this point, art works primarily in Maya for characters and Max for hard surface
objects, and the goal is to create a very simple, roughed out – block – model. There is
no texturing or any other expensive operations in place until this phase is complete.
Riggers do a simple rig on the object to explore the movement, but it’s all super basic
at this point. This is a relative inexpensive phase still, in terms of production cost.

24

Character Pre-Production Process

In
cu

b
at

io
n

Design / Concept

P
re

-P
ro

d
u

ct
io

n
Block Model

Review Meeting

Grey Model
Review Meeting

Next we enter the grey model phase

The goal of the grey model phase is to define the Model topology, identify secondary
details, deformations, the major rig components. This is also where initial playtesting
occur. How does this model feel in game? The goal of this phase is to identify all
important changes to the character design before all the expensive production work
began on the model (the high resolution modeling, texturing, etc.). This iteration
loop is still relatively cheap and allows us to understand important decisions that can
impact production of high quality assets.

25

Character Pre-Production Process

In
cu

b
at

io
n

Design / Concept

P
re

-P
ro

d
u

ct
io

n
Block Model

Review Meeting

Grey Model
Review Meeting

• Model topology
• Secondary detail
• Deformations
• Rig components
• Playtesting

The goal of the grey model phase is to define the Model topology, identify secondary
details, deformations, the major rig components. This is also where initial playtesting
occur. How does this model feel in game? The goal of this phase is to identify all
important changes to the character design before all the expensive production work
began on the model (the high resolution modeling, texturing, etc.). This iteration loop
is still relatively cheap and allows us to understand important decisions that can
impact production of high quality assets.

26

Character Pre-Production Process

In
cu

b
at

io
n

Design / Concept

P
re

-P
ro

d
u

ct
io

n
Block Model

Review Meeting

Grey Model
Review Meeting

In this phase, we combine the block models to make a single manifold model. Note
that we do not create UV layout or textures yet. We identify the bind pose that will
be best for skin deformations. On the model, keep evenly spaced quads at medium
resolution suitable for taking into hi res modeling. Additionally, indicate flexible and
rigid surfaces on the model. Include block models to represent all permutation add-
ons such as packs and armor.

27

Character Pre-Production Process

In
cu

b
at

io
n

Design / Concept

P
re

-P
ro

d
u

ct
io

n
Block Model

Review Meeting

Grey Model
Review Meeting

Output: untextured low
poly model + rig
DCC tools:
Max / Maya

At this point, the asset is still a low-poly cage authored in DCC tools without any
material representations. Vertex weights also haven’t been finessed.

28

Then as you saw in our pipeline diagram, a block model was constructed and moved
into grey model stage for animation exploration.
Here is one of the rigging exploration test for the Vex Goblin that you saw in the
diagrams earlier – this is one of his friendly stomp walk cycles

29

During this animation exploration we see supporting mechanical animated leg
geometry. Knee pieces becomes animatable (on a “track”)
Previously unseen knee geometry will now be visible

30

Previously unseen knee geometry will now be visible and the geometry will need to
be adjusted

31

Rigging Feedback Loop

• Rigging informs model shape
• Vertices and topology are changed to accommodate rigging needs

• Animation tests are important to explore a good range of motion based on the
character design

• Corollary:
• Subsequent changes to the geometry need to preserve rigging constraints and

vice versa

• Mesh autogeneration needs to account for rigging / vertex weighting

During the grey model phase, rigging informs model shape (i.e. geometry directly)
Vertices and topology are changed to accommodate rigging needs
Animation tests are important to explore a good range of motion based on
the character design

Corollary:
Subsequent changes to the geometry need to preserve rigging constraints
(including vertex weighting)
This is important for any autosimplification or auto-generation stack that will
be used to generate geometry post grey-model phase.

32

What If Rigging Needs Model Changes?

• Expensive to change when high res model is done
• Changes to both high res and low res must be done

• Opportunity cost multiplies with time
• Changes propagate throughout the whole pipeline: need to repeat baking, LOD

generation, etc.

• Any manual steps compound the cost
• Autogeneration reduces the cost – just time / computing power

Once we have generated the high resolution assets (Zbrush model, etc.) changes that
are necessary to accommodate rigging needs can be much more expensive to
implement (and may ripple through many stages, like UV layout, texture baking, etc.).
Any manual steps in the process compound the cost of changes. Of course, that’s the
main motivation to introducing auto-generation into the pipeline – to drastically
reduce the cost of any changes (just recompute!)

33

Character Pre-Production Process

In
cu

b
at

io
n

Design / Concept

P
re

-P
ro

d
u

ct
io

n
Block Model

Review Meeting

Grey Model
Review Meeting

Unblocked:
Mission and

Encounter Setup

Design

Unblocked:
Full Production

Animation

Animation

Unblocked:
Final Skinning

Facial Rigging

Rigging

Unblocked:
UV Layout, Tex.

High Res Model

In-Game Model

3D Art

P
ro

d
u

ct
io

n

Once we are done with the grey model phase, we enter the final stage - the
production phase for this asset.

At this point, design team starts working on mission and encounter setup with this
character. Animation starts doing full production animation cycles, rigging does the
final skinning and facial rigging for the character (if the latter is desired), and, …

34

Character Pre-Production Process

In
cu

b
at

io
n

Design / Concept

P
re

-P
ro

d
u

ct
io

n
Block Model

Review Meeting

Grey Model
Review Meeting

Unblocked:
Mission and

Encounter Setup

Design

Unblocked:
Full Production

Animation

Animation

Unblocked:
Final Skinning

Facial Rigging

Rigging

Unblocked:
UV Layout, Tex.

High Res Model

In-Game Model

3D Art

P
ro

d
u

ct
io

n

of course, 3D art gets busy doing the expensive work on the character. UV
unwrapping starts, texturing; modelers build high resolution models in the
appropriate tool (typically Max for hard surfaces, Maya for inorganic moving objects,
and Zbrush for organic surfaces). This is also where baking of material representation
occurs to enable the final shading / lighting passes start occurring in game on the
material representation for this object.

35

And at the end of this phase we have our assets in game with the full material stack,
lit and rendered in engine

36

Final Game Assets

• Typically targeted for specific platform
• LOD is autogenerated (Simplygon)

• Detail fade-out portions are marked to render on higher-end platforms

• Material representation maps are baked out
• A myriad of tools (more on that in a minute)

And at the end of this phase we have our assets

37

The Real Cost of Developing Assets

• Creating a high-quality asset once is time-consuming enough

• But the real cost is in iteration of the asset’s design
• Creative vision only becomes actualized once the asset has been through the

ringer (playtested in game)
• Silhouette changes, readability, rigging changes due to animation tests, etc.

• Nothing is locked until that’s satisfied

It’s definitely true that for high-fidelity graphics, there is a very high cost of creating
the high-quality asset. Once! But once we start thinking about all the iterations the
assets go through during their lifespan (for design reviews, animations, etc.) the cost
of iterating on an asset becomes the dominant factor. In games, the reality is that the
creative vision (and thus the purpose for this asset) is only actualized once the asset
is in the game, and players (and designers) can experience this asset in the actual
context, examining its readability in game, its behavior for animation and the purpose
in game, the silhouette readability, and so forth. This means that the actual content
may not be locked for a number of iterations.

38

The Real Cost of Developing Assets

• Changes to one of the elements propagate deep

• Manual representation processes necessitate rigid sign-off

The important corollary for this is that changes to any of the asset elements have a
deep propagation stacks. This is particularly true for any elements that require non-
iteration friendly rebake – or worse – re-author elements. If you needed to change
UVs for any reason, it may now mean you need to re-rip all the maps (ex: normal,
displacement). You changed the compression for texture adding support for BC7, let’s
say – another rebake. Of course, some of these elements are automatable, but,
however, even with that, it’s still a time-consuming process.

To deal with this, game production pipelines developed sign-off processes –
essentially allowing a time frame where there is tolerance to changes to a particular
element of the asset, but sign-offs phases exist because the representation is rigid.
For example, no changes to silhouette in production phase – redoing Zbrush and low
res and animation / rigging → $$$ production-wise.

Ideally, of course, we develop content creation pipelines that minimize any rigid
phases, allowing as flexible and iterative process for asset creation. That allows
creators to focus more on iterating the vision, and less worry is spent on the costly
sign-offs.

39

Manual Representation Changes == $$$

• If assets need to be touched manually, $$$ / thousands of assets ==
production pain

• Stalls innovation of representation formats

Of course, even worse than re-bakes, if the assets need to be touched manually, this
equates to significant costs in artist times. If you consider that need for thousands of
assets that might be present in any given game level, this can significantly increase
production pain (and costs). This also can signify stalling injection of new
representation if affects production time. A good examples of that have been the
switches to physically-based rendering approaches (which required major changes to
the textures assets) and adding tessellation (which required changes to the low-
resolution polygonal cages and displacement maps).

40

The North Star for Game Pipelines

• Our goal is to identify the iteration loops in the content creation
pipeline and simplify them
• That’s where the expense lies (time and $$)

So what we’re aiming to do is to determine what iteration loops exist currently in the
game production pipelines for asset creation and simplify them, replacing manual
steps with automation and reducing complexity of bake processes. This is ultimately
what will drive the production costs down for game creation.

41

Autogeneration of Representation == Pure Win

• Major pipeline wins with automatic generation of representation
assets
• Assuming fast generation times

• Iteration is important

• Example: automatic LOD pipeline
• Artists specify memory budgets per LOD band, and .. magic!

• Generate most effective representation for each platform

• Expand to new platforms as necessary

If we can add automatic generation of representation assets (textures, meshes, etc.)
this equates to significant production gains. The important to consideration to keep in
mind is that we’re doing this to allow iteration, thus we shouldn’t add automatic
generation of various representations (LODs, etc.) if they stall iteration.
A good example of where that occurred is automatic LOD generation – originally
LODs had to be generated by hand manually, and that was a painful, time-consuming,
and fragile process. Implementing automatic simplification elements of the pipeline
allowed us to remove that requirement, allowing artists to focus only on base mesh
generation. Of course it is still important to add controllability by providing, for
example, heuristics for controlling the reduction amount or memory footprint per
LOD band. It also enabled us to seamlessly add new LODs for new platforms, without
having to manually re-author thousands of assets.

42

Artist Surveys

We also wanted to take a pulse from the artist community (both games and film) to
understand what their impressions and pain points were in this domain.

43

This is the list of studios who responded.

44

Hi Poly Creation

• “It’s the fun part of the process for artists”
• Highly creative

• “High poly isn’t necessarily high effort”
• We can go up to a high level of polygons pretty much without any problems

• As long as you only sculpt truly necessary details

• Can be hard to sculpt details when they don’t map to bind pose

Consistently, the artists relayed that high polygon creation is where they want to
spend their time. With the advent of the latest high-poly pipelines (Zbrush, mudbox,
etc.), it’s quite easy to add details going up in the extremely high level of polygons
without any problems or long efforts. The major difficulties the artists encounter in
that area is sculpting details which may not map to bind pose (example: armpits). But
other than that, this is a very creative phase of content creation.

45

Hi Poly Creation

• Strengths
• One of the most fun parts of the process for artists

• We can go up to a high level of polygons pretty much without any problems

This is one of the most fun parts of the process for artists

They get to go wild scupting beautiful things in Zbrush / Maya / Max. Here are some
examples of Destiny gear that were created by an amazing artist Mike Jensen

46

Low Poly Creation

• Usually pretty fast process
• Not too hard as long as you have a rigger to help

• Polygonal budgets aren’t as limiting any more

• Locks assets to a specific hardware target

Next, they can generate low-poly in DCC tools as well – the most complexity there is
with the help of a rigger, ensuring that all rigging requirements are satisfied. However,
creating specific low polygonal assets does lock the actual asset to a specific
hardware target, typically through pre-defined polygonal budgets. Changing this
budget means re-authoring, and that’s where you start seeing the cost pile-up.

47

“Doing things l ike UV can give the artist a bit of rest“
Mike Jensen, Polyarc

The irony: “Doing things like UV gives an artist a bit of a rest for their brain”

48

Unwrapping

• Time waster: ~15% time of asset creation

• Tricks can be essential to maximizing texture storage
• Currently not well automatable

• Edits require a re-bake

• Not a creative part of the process

“I think doing away with UVs would be a pretty awesome thing.”

Although uv unwrapping is pretty fast with good tools, it’s not fire and forget – artists
often still have to do a lot of tricks to maximize texture storage (UV island overlap,
scaling UV islands, etc.)

49

Usually pretty fast process
Flexible toolchain
You can choose from any bakes you like!.. Whatever floats your boat.. Or your
non-Atkins diet anyway..
But you get tired from so many decisions..

50

A myriad of tools – to each their own
3dsmax, Xnormal, or handplane. xNormal, CrazyBump to Maya. Baking from highres
(whether it's zbrushed, photogrammetry, or high res model) for most things. For
small mechanical details artist can use Ndo. Substance Painter to create normal maps

3DSMax
baking from Zbrush / Photogrammetry sources, Ndo for small details…

51

Baking Maps

• Keep rebaking because …
• Adjusted high and low poly to fix artifacts

• Changed unwrapping to fix gutters

• Tweaked raycast distances to pick up features

• Nooks and crannies miss details

• Used the wrong tangent space

“Another pain point for artists”

Across thousands of assets
$$ COSTLY $$

Baking normal map is actually another pain point for artists- to be more precise,
baking repeatedly while adjusting the low poly to minimize artifacts.
Weaknesses:
• Nooks and Crannies again an issue. Shouldn’t we optimize the UV space

automatically based on feature frequency so that artists don’t need to?
• Inconsistent tangent spaces between engine and DCC tools are problematic
• Once the decisions are done, the asset is baked. But at that point, it’s incredibly

hard to identify any bugs which brings us to the next point..

52

Deep Pipelines Debugging is Fun

53

A Deep Source to Runtime Pipeline

• Errors can happen at any stage

• Hard to diagnose – where do you hunt this bug?

Hi Resolution Source

Zbrush
Max
Maya

Low Res Source

Zbrush
Max
Maya

Offline Conversion to
Runtime Formats

Preprocessor

Texture Compressor

Runtime Engine

HW decompress

Shader range convert

54

Does this highlight look right to you?

Here is a pic of a gun in game.

55

Well, it ’s Wrong.

Has a weird mark.

56

The Normal is A’ight?

But the normal map itself is perfectly smooth there. So any ideas? What’s happening
here?

57

The Gradients Tell a Different Story

Switching to “NormalEdges” mode I see this. In our engine we have gradients display
(we call it “Edges”). It shows us something interesting.

58

Conversion Matters

Yep. After a bit of a complex investigation, it turned out the error was in our texture
compressor.

59

Does this normal map look right to you?
(Take 3)

This is a pretty common issue to variety of engines. Here you have a normal map –
looks kind of ok.

60

Does this normal map look right to you?
(Take 3)

In this case you can see the “bruising” that happens on the left hand side of the
model/normal map.

The artist forgot to break the smoothing group on the center face. OR he could have
added some very very tight chamfers/control edges to simulate the same fixup.

61

Does this normal map look right to you?
(Take 3)

You can see the bruising somewhat here, on the left side again, from adding 1
smoothing group, wrapping around the angled surface.

62

Does this normal map look right to you?
(Take 3)

Now I broke the smoothing groups here, to get a hard edge/clean normals.

63

Does this normal map look right to you?
(Take 3)

This will show up even more so, when higher spec/cubemap is applied/visible in-
engine. Even worse/more noticeable if is In ADS/Iron sight on a scope.

64

Does this normal map look right to you?
(Take 3)

Broken smoothing (or chamfers) now result in a much cleaner normal map, but adds
to the geo cost/budget. So that’s problematic to address and to diagnose, requires us
looking in the full set of tools to understand the relationship between geometry and
material representation

65

We have the same kinds of problems in COD.

This image shows a dark stripe along the edge of a character’s vest; the character
happened to be acted by Kevin Spacey.
The colored lines represent the tangent frame.

66

This image shows the result when Maya’s tangent space is exported along with the
mesh, instead of the game engine calculating its own.

Unfortunately, because all of the game’s assets had been exported from Maya
without tangents at this point in the project, we were only able to fix this issue in
spots where we noticed the artifact and re-exported.

67

It ’s Not the Normal’s Fault!

• Complex diagnosis due to challenging triage
• Is it the art source?

• Is it the art tool?

• Is it in the offline preprocessor?

• Is it in runtime / shader?

Deep tools to runtime pipeline necessitates time consuming investigations to
understand the source of error

Baked normal maps have lots of problems that are hard to diagnose

When they are detected our choices are limited
Re-baking is so expensive (especially late in the project)

70

Tessellation: What About That Silicon?

71

Tessellation – the last few decades

Hardware tessellation has been around for a while
PN-Triangles are over a decade old

72

Tessellation – What About that Si l icon?

• Current HW tessellator takes up a tiny area on the die
• Ex: R390 series it takes < 1/8 CU per tessellator

• 4 tessellators total (with 64 CUs total)

• Roughly 1 SIMD’s worth of die space

AMD, dropping tessellation hardware would allow adding <1/8 CU in a high end R390
series (with 4x tessellators, the max). These GPUs have ~64 CUs, adding single CUs
not possible anyway.

73

The Slow, Arduous Path for Tessellation in Games

• Still not pervasively adopted by the game industry

• Terrain / water are primary uses in most games

• Props / characters / environment tessellation
rarely adopted

[Brainerd 2014]

Still not pervasively adopted by the game industry
Terrain / water are primary uses in most games

Relatively straightforward use cases
Interpolative tessellation has cheaper runtime cost
Displacement maps are relatively easy to author

Props / characters / environment tessellation hasn’t been widely adopted in games
With a few notable exceptions: Call of Duty: Ghosts, Lost Planet 2, etc.

74

Why Is It So Hard?

• Content source representation changes

• Art tools pipeline

• Runtime performance

• Hardware behavior

75

Why Is It So Hard?

• Content source representation changes

• Art tools pipeline

• Runtime performance

• Hardware behavior

76

Tessellation Adoption Challenges:
Source Content

• Source content representation may need to change

• Multi-generation / multi-platform titles can’t afford to fork content
representations
• Polygonal versus subd battle

Depending on tessellation method, source content needs to change
PN triangles need crease edge management specified in content
Displacement map for most cases need to be generated
SubD needs control cages

This changes the entire authoring pipeline: mesh generation, texture
baking and rigging
Large associated production cost

Multi-generation / multi-platform titles can’t afford to fork content representations
Content creation is where the vast majority of game costs lies

77

Why Is It So Hard?

• Content source representation changes

• Art tools pipeline

• Runtime performance

• Hardware behavior

78

Why Is It So Hard?

• SubD: Geometry representation needs to fundamentally change

• Control cages necessitate entirely separate assets – a large production cost to
author

• Multi-platform throws an extra wrench

SubD: Geometry representation needs to fundamentally change
Control cages necessitate entirely separate assets – a large production cost to
author
Multi-platform throws an extra wrench

79

Why Is It So Hard?

• Needs a whole new content pipeline tied to the specific runtime
representation

• PN triangles need in-DCC tools preview (not integrated)

• ACC-like approaches need a fair amount of preprocessing to match Maya
topology handling

• Creases!..

Needs a whole new content pipeline tied to the specific runtime representation
PN triangles need in-DCC tools preview (not integrated)
ACC-like approaches need a fair amount of preprocessing to match Maya
topology handling
Creases!..

80

Why Is It So Hard?

• Content source representation changes

• Art tools pipeline

• Runtime performance

• Hardware behavior

81

Tessellation Runtime Performance

• Poor quad performance due to overtessellation

• Losing HW culling features →must implement your own (viewport,
frustum, guard band culling, etc.) → high cost HS

• Hull shader serialization due to complex per-patch logic necessitated move
to compute shader

• Pre-skin once prior to tessellation

• Poor utilization for shadow / depth prepasses

Shadows and depth prepass have poor HW utilization in that case
Option 1: Tight optimization (ex: Brainerd 2014)
Option 2: Drop the depth prepass (you aren’t saving much)
Option 3: Compute a conservative interior shell for the tessellated object and
draw that instead.

Ala conservative depth in DX11. Relatively complex to get right though.
Depends on displacement behavior.

82

Tessellation: It ’s Al l About Commitment

• Once you tessellate, you always tessellate…

• But you only render your object once per frame, right?...?
• Hm…. Sometimes.?

83

And other times not so much. For example what if you are a game about space
magic? In our game we have dynamically instanced ‘magic’ or, as we refer to the
technical feature: “object effects”. Although we do a bunch of optimizations of
drawcalls during our offline preprocessing (to merge by shaders, geometry
properties, etc.) we also have a bunch of dynamically instanced decals (extruded
geometry), etc

84

Gear Bits: From DCC to Runtime

• A object can be rendered on average 5 times a
frame
• Opaque

• Decals

• Shadow map passes (several)

• Transparent passes

• Each gear object → 4-9 runtime components

• That could be a lot of drawcalls

So if we look at an average
Indeed! An average player object can be rendered about 5 times a frame.

Here we have a geared character (a Warlock in this case), rendering its gear as
opaque geometry, we see some decals on his weapon and armor, he is also rendering
to shadow map passes (we use four cascade shadow maps, but also can have local
light shadow maps as well), and then finally, when he uses his super – a special power
ability – you see that glowy effect on him? That’s the power of transparent passes.
In other cases you may want to render your object to depth prepass to avoid shading
the pixels behind it.

85

ONCE YOU TESSELLATE, YOU CAN’T GO BACK

• Once you tessellate, you always tessellate…
• Tessellate for every pass, or else..

Vanilla untessellated cube

Let’s take a look at what happens if you don’t tessellate every pass that happens to
that object…

86

• Once you tessellate, you always tessellate…
• Tessellate for every pass, or else..

ONCE YOU TESSELLATE, YOU CAN’T GO BACK

Gently tessellated cube

Let’s take a look at what happens if you don’t tessellate every pass that happens to
that object…

87

• Once you tessellate, you always tessellate…
• Shadows

ONCE YOU TESSELLATE, YOU CAN’T GO BACK

Gently tessellated displaced
mesh with untessellated shadow
drawcalls

Let’s take a look at what happens if you don’t tessellate every pass that happens to
that object…

88

• Once you tessellate, you always tessellate…
• Shadows

ONCE YOU TESSELLATE, YOU CAN’T GO BACK

Gently tessellated displaced
mesh with tessellated shadow
drawcalls

Let’s take a look at what happens if you don’t tessellate every pass that happens to
that object…

89

• Once you tessellate, you always tessellate…
• Decals

ONCE YOU TESSELLATE, YOU CAN’T GO BACK

Untessellated mesh with
untessellated deferred decal

Let’s take a look at what happens if you don’t tessellate every pass that happens to
that object…

90

• Once you tessellate, you always tessellate…
• Decals

ONCE YOU TESSELLATE, YOU CAN’T GO BACK

Tessellated displaced mesh with
untessellated deferred decal

Let’s take a look at what happens if you don’t tessellate every pass that happens to
that object…

91

Why Is It So Hard?

• Content source representation changes

• Art tools pipeline

• Runtime performance

• Hardware behavior

92

Tessellation Adoption Challenges: Hardware
Behavior

• Fine-grain displacement features are often missed due to fixed
tessellator pattern

• Post domain-shader vertices can be at wrong locations, missing displacement
features present in the texture

• Displacement map is typically parameterized by the main UVs which are not
tuned to maximize displacement feature density

93

New Representations in Call of Duty

Now that we’ve highlighted some issues in our existing content creation pipeline, I’m
going to post mortem our efforts to introduce new content representations into the
Call of Duty asset pipeline.

94

Catmull Clark Subdivision Surfaces

© 2014 Activision Publishing, Inc.

In 2013 with Ghosts, we added a real-time subdivision surfaces renderer based on
Feature Adaptive Subdivision.

95

Implementation guide

See GPU Pro 7 pg. 17-39

edited by Wolfgang Engel

A pretty thorough description of our implementation can be found in the latest book
in the GPU Pro series.

96

Pipeline challenges

The pipeline was initiated at the request of Infinity Ward’s lead artist, who felt it
would be a great way to establish the model LOD for the new PlayStation 4 and Xbox
One consoles.

However, other artists found it was more difficult to build these assets than they
expected. They had to learn new modeling rules to create good geometry, and this
cost more time than they were saving from modeling the simpler primitives.

Additionally, normal map baking inconsistencies between the SubD representation
and the triangle representation lead to lighting inconsistencies in the LOD chain.

There is a real difference between modeling subDs for baking and modeling subDs for
real-time. For baking, you can just press the ‘smooth’ button and your mesh is
generated. But if you do that for real-time, you will end up overtessellating and get
garbage for your results.

97

Pixar Modeling Tips

Best practices for SubD construction

http://graphics.pixar.com/

opensubdiv/docs/mod_notes.html

For a primer on effective SubD modeling, see Pixar’s guidelines that are published as
part of the OpenSubdiv documentation.

98

Performance

The runtime performance of the pipeline was acceptable but not compelling
compared with modeling high triangle counts, and the tables and other
supplementary data required by Feature Adaptive Subdivision added memory costs
which neutralized savings from using a simpler representation.

99

Adaptive Quad-Tree Subdivision Surfaces

In upcoming titles we hope to mitigate some these issues using Adaptive Quad-Tree
subdivision (see Tim’s AQT talk), which is up to 3x faster and has significantly smaller
memory requirements.

This is a great example of a coordination between industry & academia delivering a
practical solution that can enable new content representations in games.

100

SubD in 2016

© 2016 Activision Publishing, Inc.

However, usage within the titles is ultimately be driven by the artists preferences and
we have seen a mixture of use.

This is one of the biggest challenges with introducing a new content representation:
the artists have to be behind it all the way, and the technology has to become 100%
solid very quickly, or else people will fall back to what they know.

In 2016, use of the SubD pipeline is mixed.

It’s still used for many “hero” assets such as principal characters’ faces, but the dream
of every high LOD prop and vehicle being a subdivision surface has yet to be realized.

I was recently told that the first level of Infinite Warfare SP features several hundred
tessellated croissants, so there is that.

101

Environment displacement

Our second attempt to introduce a new content representation was displacement
mapped terrain.

This was a programmer-driven initiative but senior artists were on-board from the
beginning.

We were able to achieve excellent visual results but at a performance cost, and this
again led to underwhelming usage of the new pipeline, despite last minute
optimizations that improved performance significantly.

102

Photogrammetry &

Star Wars: Battlefront

by Andrew Hamilton

and Ken Brown,

DICE

GDC 2016

Interestingly, after I described the technology at SIGGRAPH two years ago and
another major developer implemented and shipped something similar, internal
interest was re-kindled.

103

Sharing works!

Star Wars Battlefront
By DICE (Electronic Arts)

104

Displacement in 2016

© 2013 Activision Publishing, Inc.

We’re now using that pipeline more than ever, and results from our survey indicate
that interest in displacement mapping is increasing industry-wide.

Now that 4K is becoming more prevalent, the need for geometry amplification is
growing and so the need for displacing to obtain fine-grain details in runtime.

105

Can we make the hardware more flexible?

Given that we’ve been discussing problems with tessellation, we’d like to offer an
example of a new direction that might mitigate the issues we have encountered. To
be clear, I am not a hardware designer, so proposing hardware changes here is a bit
like an artist telling me how to design a renderer. This isn’t intended to be a concrete
proposal, just as an inspiration to think about tessellation in new ways.

The following proposal is an attempt to extend the underutilized tessellation
hardware present in modern DX11 GPUs. It aims to resolve issues with suboptimal
tessellation patterns, and to enable the pipeline’s reuse as a means for high
performance GPU-driven indirect scene submission.

106

VS HS DS PST

The standard tessellation pipeline consists of: vertex shader, hull shader, tessellator
block, domain shader, and pixel shader.

For the purposes of the proposal we’ll treat the Vertex shader as part of the Hull
shader, since all information from the vertex shader is consumed by the Hull shader.
In Direct3D the Hull shader is divided into two parts, but for simplicity I will use the
OpenGL model of a single shader.

The Pixel shader stage is ignored because its usage is unaffected by tessellation

107

HS

TTess
factors

Control
points DS

Index
buffer

Domain
locations

Primitive
Assembler

Standard tessellation

1. The Hull shader selects tessellation factors (the exact number and their behavior
depends on the primitive type) and optionally passes an array of control points to the
domain shader.
The Hull shader can cull patches at this stage by returning 0 as the tessellation factor.

2. The fixed function tessellator block consumes the tessellation factors and
effectively synthesizes an index buffer and an array of floating point domain locations
across the patch. Modern hardware typically stores the indices and domain locations
in a memory-backed ring buffer.

3. The synthesized index buffer and domain locations are fed into the Domain shader,
whose output causes triangles to be rasterized.

108

Expanded tessellation

HS

TTess
factors

Arbitrary
data DS

Primitive
Assembler

Index buffer

Vertex buffer

Choice
?

Draw
args

In this proposal, the Hull shader can choose to return a primitive count and an offset
into an index buffer, in addition to a fixed amount of arbitrary parameter data (which
utilizes the storage typically reserved for control points).

The choice between tessellation factors and indices is made on a patch-by-patch
basis. When indices are chosen, the fixed-function tessellator block is bypassed and
the domain shader and rasterizer are driven by the index buffer as in standard
triangle rendering.

109

Expanded tessellation: Better patterns

• Build custom index & domain location buffers offline

• Hull shader selects from a palette, like legos

• Caveat: Stitching between patches is manual
• Typically done already for adaptive tessellation

For improved tessellation patterns, programmers construct custom tessellation
patterns as a preprocessing step.

The hull shader selects the pattern appropriate to the patch and returns its indices
and domain locations from a pre-built buffer. Note that rather than being given a
fixed function domain location, the domain shader loads one from the buffer
according to its vertex index.

An important caveat is that seamless stitching between patches must be managed by
the programmer, utilizing adjacency information in the Hull and/or Domain shader.

While not a perfect solution to the issues with the hardware tessellation pattern,
explicit index buffer and domain location control at least make it possible for
programmers to utilize the hardware to get good visual results without reverting all
the way to compute- or geometry shader-driven geometry synthesis. Because the
mode can be selected on a patch-by-patch basis, problematic patches can be treated
specially while simple patches continue to use the fixed function hardware.

110

Expanded tessellation: “Draw” shaders

• GPU-independent scene submission for tiny models

• Hull shader output is essentially a MultiDrawIndexedIndirect packet

• Each thread places, LODs, culls instances, emits draw args

The other use of explicit index buffers is to treat the Hull shader as a form of “Draw”
shader. In the expanded pipeline, the Hull shader output corresponds to the
arguments to an API-side Draw call. We can therefore recast the tessellation pipeline
as a generator of tiny draws that are treated together as one large draw.

In typical usage, multiple LOD and/or aesthetic variants of models such as debris or
foliage can be packed into a shared vertex buffer, and many instances can be drawn
by submitting a single “tessellated” DrawPrimitive where each patch corresponds to
one model instance.

The Hull shader culls the models against the view frustum, occlusion data structures,
etc. and discards invisible instances by setting tessfactor 0. For visible instances, the
Hull shader performs a LOD selection calculation and returns the appropriate index
buffer offset and primitive count. By passing transforms through parameter data, the
Hull shader can even randomize the placement of instances according to a stateless
function. Note that instead of interpolating control points using a domain location,
the Domain shader simply loads vertex data according to its vertex index.

An alternative way to look at Draw shaders is in the context of Multi Draw Indexed

111

Indirect Instance. Consider the Hull shader stage a GPU-side on-demand generator of
MDII packets, without the need for a Compute shader prepass to generate them. This
enables a fully GPU-driven stateless scene submission without CPU interaction.

111

Separation of representations

To conclude, we’ve established that artists are spending effort in a manual and error-
prone process to produce a run-time content representation that is not scalable and
prevents us from innovating. What can we do about it?

112

Separation of representations

• We have to split the content authoring data representation from the
real-time data representation

• This requires that we take control of the entire baking pipeline

• But what representations should we use?

113

Our challenge to the research community is to develop separable authoring and run-
time content representations for games. What we mean by this is that the artists
author to the specifications of a high fidelity authoring representation, and an
automated pipeline transforms the content into an efficient realtime representation.

The authoring representation should preserve existing workflows for creating high
poly models as much as possible, and should require minimal hinting to drive the
downressing pipeline.

High-fidelity assets directly to real -time

• Automate unwrapping …or don’t require it

• Automate LOD …maybe different representations

• Automate baking …or don’t require it

• Support rigging …transfer it

• Be interactive …don’t make artists wait

The transformation pipeline to real-time must be capable of producing triangle mesh
LOD stacks and baked textures as required by a modern graphics engine, with
maximum efficiency and fidelity to the source assets. It must support animation,
rigging, metadata association as required by typical game engines. It must be fast
enough to use interactively while authoring to preview results live in the game
engine.

Having this pipeline will free artists from spending manual effort to target hardware
capabilities directly with their authored representations, saving time and reducing the
cost of content changes.

115

High fidelity doesn’t mean high effort

• What are some examples of high fidelity construction techniques?

So what are the challenges of creating this kind of automated pipeline? And what
kind of high fidelity authored representation should we target?

116

Million polygon mesh

Here is an example of an asset created for Destiny by Mike Jensen

Make it any way you want, flexible, this could be a fundamental representation
Paint color directly on the high res mesh → vertex colors
Or map it, whatever

How do you rig it though?
How about faces?

117

Here is an example of an asset created for Destiny by Mike Jensen
Zbrush sculpt of an inorganic asset

118

Displaced SubD

Artists already model SubDs when they use Smooth in Maya
But it would still need simplification, 60k patches is mot feasible for real time.

119

[Tatarchuk, Wang SIGGRAPH 2014]

The kitbashing representation is only useful if we automatically generate efficient
runtime representation without pushing the burden onto artists
To make this real, we had to convert the individual kitbash models into a coherent
runtime representation. This meant
- Merging drawcalls in a smart manner, sorting shaders, atlasing textures and

autogenerating LODs from the messily zbuffered kitbashed meshes
- But that was largely transparent to artists which was highly welcome and really

opened up their creativity

120

Dreams

SDFs are an entirely new representation.
How do you rig and animate these?

121

Subdivision surfaces

Ptex, sometimes

LOD, sometimes

Very complicated rigs

What do fi lms use?

What representations work in film and why.
Are they appropriate for realtime?

122

PTex?

Some film studios love it, some hate it
Again we are talking about separability so real time use is not necessarily important

123

Imagine this future…

This video shows a prototype relaxation-based simplification tool, targeting vector
displacement maps.

As input it takes a 3d model that is homotopically equivalent to a disk (e.g. a closed
mesh with exactly one hole).

The mesh is relaxed onto a square, and a vector displacement map, normal map &
color map are generated.

Re-rendering the maps onto a grid using hardware tessellation gives a close
approximation of the original mesh, but can be simplified by reducing the tessellation
factor.

Up until 2:20 the tool is used to reproduce a simple head model.
Afterwards it is used to transform a million-polygon brick wall model into a tile-able
displacement map.

Both models use the same pipeline, demonstrating that very complex inputs can be
baked to the same scalable runtime representation.

124

Call for Action

• Develop a separable pipeline
• “I author my high poly, and with a button press out comes engine-ready assets”

• Automatically takes high poly representation to a desired current
representation
• Flexible enough to target future representations
• Scalable generation

• Next problem:
• Animation and rigging with high poly representation

• Invitation to collaborate!

Develop a separable pipeline – call for action for both development community as
much as the research community

125

Thanks

• Survey artists

• Aaron Lefohn

• Brett Miller

• Rajesh Sharma

• Inigo Quilez

• Graham Wihlidal

• Peter-Pike Sloan

• Danny Chan

126

127

We’re hiring too!

https://www.activision.com/careers

128

Questions?

129

