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Hello. I’m Tim Foley from NVIDIA Research, and I’m here today to talk about the 
programming languages and tools we use for real-time graphics, and how we could 
possibly improve things. 
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Before I dive in, I’ll go ahead and give a bit of background on myself. 
 
I work in a real-time rendering research group at NVIDIA, but I try to straddle the line 
between graphics and languages/compilers. 
My research projects to date have mostly been on languages, programming models, 
and APIs for graphics. 
I’ve done work on some of the early GPU compute systems, alternative approaches 
to shading languages, and systems using shader-like programming to exploit CPUs 
(SIMD, etc.). 
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As a starting point, I’d like to spend some time talking about the state of the art in 
real-time graphics programming today. 
This is largely based on my experience when I go and write application code. 
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When I start out writing the CPU part of an application, I typically use a simple set of 
tools. 
I’ll write in C or C++ (depending on the requirements) and pick the front-end for my 
chosen platform. 
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If I need to write code for multiple platforms, I might deal with a few front-ends, and 
a different debugger per-platform. 
Overall, though, the situation isn’t too bad. 
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As soon as I start trying to use a GPU to do graphics, though, things get messier. 
I need to write shader code in its own special language, and different graphics APIs 
have their own languages. 
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And those languages have their own supporting compilers and intermediate 
languages (ILs). 

8 



And when it comes time to debug my GPU code, or evaluate its performance, I have a 
bunch of different tools to consider. 
Many of these tools are very powerful (please don’t think I’m criticizing them), but 
they are often locked to specific graphics APIs, platforms, or HW vendors. 
 
So where I had a relatively simple picture when I just need to run on CPU, as soon as I 
want to do GPU work I’m faced with this zoo. 
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It isn’t just about a proliferation of languages and tools, though; the way we program 
GPUs for real-time graphics is woefully outdated. 
 
Not only do we write our GPU code in different languages, but we effectively write an 
entirely different *program* for CPU and GPU. 
 
When it comes time to specialize and compose GPU shader code for performance or 
modularity reasons, we resort to ad hoc methods. We are really just banging strings 
together. 
 
As a result, it is quite difficult to build more advanced tooling at the engine level – 
things like custom languages, optimizations, or code generators. 
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To dig into some of these issues, let’s start with a toy kernel that I might write on 
CPU. 
 
Here I’ve got code for adding two arrays together. Let’s suppose this isn’t fast enough 
(because we can never add 100-element arrays fast enough!), and I decide to run it 
on my GPU. 
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So I’m going to try to run this bit of code here on my GPU, and I’m going to use 
Direct3D 11 to do it (just because D3D 12 would be even *more* code). 
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First, I need to rewrite my kernel code into HLSL. 
 
As you can see at the bottom of the slide, the core logic didn’t change much. 
 
But I’ve got all these extra boilerplate now, which mostly has to do with passing 
parameters into the kernel. 
Every kind of parameter seems to have its own syntax, and so we end up with 
something a lot messier than we started with. 
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Next I need to integrate the HLSL compiler (fxc.exe) into my build, or use the provided 
API to orchestrate compilation myself. 
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And then I need some code to load the compiled bytecode at runtime. 
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And now I can finally get around to invoking my kernel. 
But what used to be a single function call in the original code is now a bunch of state-
setting logic followed by a dispatch. 
 
And the parameter passing is really implicit here, so I have to try to remember which 
binding slot I used for `a` and `b`… 
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…and of course the answer is undefined, because back on that earlier slide I forgot to 
add this extra cruft to my parameters to specify how they should get placed. 
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Okay. Finally. 
We have something that works. 
 
But I just wanted to add two arrays! 
 
Is this really the best we can do? 
Doesn’t it seem like all of this is going to make it harder to experiment with moving 
our code to/from GPU compute? 
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Next, when it comes time to specialize our kernels (whether compute or graphics) for 
performance, we are probably going to do one of two things. 
 
First, we might run our code through a preprocessor, to generate specialized varaints. 
Usually this is just the ordinary #ifdef, but I know that some of you out there have 
implemented your own preprocessors with fancy stuff like #for. 
 
In the second case, maybe you have let your artists write surface shaders using some 
kind of “noodle graph,” so you need to generate the final shader code by pasting 
strings together. 
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Finally, I want to talk about design-space exploration. 
 
There are a lot of high-level design choices I might have when I go to build a renderer. 
For example, I might ask myself whether I should be doing one of these new “forward 
+” things, or stick with tiled deferred. 
I might ask myself whether it makes sense to use GPU compute to do my scene 
culling and generate data for submission like the “multi-draw-indirect” advocates talk 
about. 
 
For each of these choices, the current state of the art is: you just manually code as 
many of the options you can, and see what is fastest. 
But wouldn’t it be better if we built tools that could help with this? 

20 



With some of the problems (or challenges) covered, I’m going to spend a little time 
sketching one possible vision for what the future of graphics programming might look 
like. 
Later in the talk I’m going to go into more detail on these items, so for right now lets 
just consider these high-level aspirations. 
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First, let’s see if we, as an industry, and finally make the jump to using C/C++ for our 
shader code. 
That way, instead of the zoo of tools I showed earlier, we might have a picture like 
this. 
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Next, instead of the mess of code I ended up with when I tried to add two arrays, 
what if we had a compiler that understood that an application is built out of both CPU 
and GPU code, and made it simple to invoke one from the other? 
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And then, instead of banging strings together in order to generate optimized kernels, 
what if we had a language with more first-class support for quoting and generating 
code. 
 
[Note to folks reading the slides after the fact: the syntax over there on the right isn’t 
from any real language, but is just supposed to be a sketch of what a “quasiquote” 
feature might appear like in a C-like language. Don’t read too much into it, since it 
wasn’t mean to be covered in depth.] 
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And finally, what if we could use those metaprogramming facilities to build our own 
engine-specific languages and optimization. 
 
Like in this case, imagine that my engine has a lost of post FX, and so I create a 
custom DSL to express them in a declarative fashion. 
Then I could write custom code generator and optimizers, that might allow me to 
schedule compositions of many effects more efficiently, or manage the lifetimes of 
the buffers they use. 
 
[Note: again, the example on this slide is meant to be aspirational rather than an 
example of code you could write today in any system.] 
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Before going into detail on how we might try to achieve some of these benefits, I’m 
going to take a step back and ask why we should be looking at the graphics 
programming problem in the first place. 
 
After all, what makes graphics programming any different from other domains? Why 
should we be asking for these more advanced tools? 
 
I’m going to try to answer this by describing what it is I think graphics programming is 
all about (this is me stepping up on my soapbox, so you are certainly all free to 
disagree): 
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Now, this slide may look like a word salad right now, so I have a few figures coming up 
that I hope will explain it better. 
 
I’m going to claim that the task of a graphics programmer – what we are all trying to 
do – is to *define* and *mediate* the interface between art content, and one or 
more HW platforms. 
Let’s look at some pictures to make that a bit more concrete… 
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Here at the top of the slide we have “content,” which is all the concepts that artists 
are going to understand and author. We have stuff like shapes, movement, 
appearance, and illumination. 
 
At the bottom we have the hardware platforms that we target, which these days look 
kinda similar: we have CPU cores with support for threads and SIMD, and GPU 
hardware that supports both a traditional rasterization pipeline, and some kind of 
general-purpose compute. 
 
In order to get the stuff an artists produces up on the screen, we need to have a plan 
for how to map the concepts in the top row to the hardware platform on the bottom. 
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One (bad) way we could do that is by writing code on a per-asset, per-platform basis. 
This obviously wouldn’t scale, and so it isn’t what we actually do. 
And that gets us to the heart of my definition… 
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What I claim we actually do in practice is this: 
 
A graphics programmer defines an *interface* - a set of concepts that are specific to 
a particular engine or production. 
*This* is how we will express an animation rig. 
*This* is how we will represent reflectance functions. 
 
Some of the representations in that interface might be pure data (e.g., for a mesh), 
and others might include code (e.g., if artists describe pattern generation as a 
“noodle graph”). 
 
Either way, the task is to: 
- map the assets produced by artists so that they conform to the chosen concepts in 

the interface, and 
- map those concepts efficiently to one or more target platforms 

 
As a previous speaker noted, because artist time is often more valuable than 
programmer time on a production, it may be reasonable for developers to implement 
different bespoke mappings to particular platforms. 
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Now I’m coming back to this definition, and I hope it makes a bit more sense now 
what I mean. 
 
The task of a graphics programmer is to define and mediate that interface between 
content and the platform(s). 
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So the key thing we should be looking for when we evaluate our languages, tools and 
programming models is how well they assist us with that task. 
 
With that bit of motivation out of the way, I’m going to dive into some concrete steps 
we could take to improve our languages and tools. 
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First on that list is a simple one: 
 
Are we finally at the point where we can, as an industry, just move to writing our 
shaders in C/C++? 
It seems like a year ago this was a no-go, but now it seems like we are *really* close. 
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Actually, before I go any further, I should probably clarify that when I say C/C++, I 
mean “C/C++” with giant air quotes. 
For the near future, we will probably need to be working in subsets of the language. 
 
There have been a few attempts to define reasonable “static” subsets of these 
languages that throw out the constructs that are really hard to support with good 
performance on GPUs. 
Some of this stuff might get resolved over time, but other stuff… maybe we don’t 
ever need or want it (like exceptions). 
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I’m going to claim that switching to C/C++ for shaders will greatly improve quality of 
life for graphics programmers. 
 
We’d be able to use mature and broadly deployed compilers. I don’t know about all of 
you, but I’d really like to get those great clang diagnostic messages in all my code. 
 
For folks who are doing tricky atomic-based lock-free data structures, maybe we can 
switch to using real pointers and drop the level of semantic indirection forced by 
always working with buffers and indices. 
 
And finally, for those of you who are into that sort of thing, there are some C++ 
features that can help with writing more compact code. 
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Part of why I feel like this might be a realistic goal for the next year is that many of 
the pieces are falling into place. 
 
The Khronos folks have standardized the SPIR-V intermediate language, which is now 
supported in both Vulkan and OpenGL. 
That community has been doing a lot of open-source work on front-ends, translation 
to and from LLVM, etc. 
There is even a working clang->SPIR-V compiler, with the only problem being that it 
works for OpenCL, and not for graphics. 
 
Meanwhile, Microsoft has publicly (though not loudly) talked about their plans to 
move to a clang-based HLSL front end, and a new LLVM-based IL. 
They’ve promised that the project will follow and open-source model, and in my 
opinion that can’t come out soon enough. 
 
And Apple already has a clang-based C/C++ front-end for shaders, to they are ready 
to go. The only sticking point there is that their IL is currently not open or publicly 
documented. 
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Really, the main sticking point here will be how soon people can drop support for 
legacy platforms. 
I’m not sure how many people can really leave behind D3D11, or WebGL in the next 
year or so. 
 
My guess is that in the mean time, we are going to need some kind of C/C++ to 
HLSL/GLSL transpiler, based on a *really* restricted subset of C/C++. 
There are some bits of code out there that could help with parts of this, so maybe 
this is something where we can coordinate between a few companies/teams to get 
this done. 
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And so, once we can write our shaders in C/C++ we are done, right? 
 
That obviously isn’t what I’m here to say… 

38 



I’d argue that getting to the point where we write shaders in C/C++ is a first step (and 
*important* first step), but it won’t really resolve all of the pain points I talked about 
earlier. 
 
The rest of this talk is going to focus on capabilities that *aren’t* present in ordinary 
C/C++ today. 
 
These capabilities might come to some future version of C/C++, or they might come 
to other new languages (which might interoperate with C/C++). 
I’m not here to champion any particular language (today), so I really just want to talk 
about *capabilities*. 
 
My slides will use C/C++ pseudo-code where possible, just to make them as readable 
as possible. 
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One big area where just switching to C/C++ for shaders doesn’t help is heterogeneous 
programming. 
Ordinary C/C++ is not a heterogeneous language. 
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Remember this example where I just wanted to add two arrays, but I had to write a 
bunch of code? 
That isn’t going to get better just because the kernel was written using C++ instead of 
HLSL. 
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You might be asking yourself “is it really so bad? People ship entire games/engines 
this way.” 
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As an answer to that, let’s take a look at how people running on the *same* 
hardware, just in a different community (HPC/supercomputing folks) would do the 
same thing. 
 
Suppose I’m a CUDA user and I want to run some of this code on my GPU. What do I 
do? 
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Oh…. That wasn’t hard at all. 
 
And lest you think I’m just here to brag about NVIDIA… 
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This is the same thing done in Microsoft’s C++ AMP. It has a slightly more “modern 
C++” flavor to it, but the basic ideas are similar. 
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So what makes a heterogeneous programming model like this? 
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First, we need a way to mark code that belongs to a particular processor, so that we 
can have CPU functions and GPU functions living in the same file. 
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Second, we need a way to kick of execution from one processor type to another. 
 
CUDA does this with dedicated syntax, but C++ AMP shows that you can also do it 
with a higher-order function. 
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Finally, we need some way to allocate and place resources in the different memory 
spaces of a heterogeneous system. 
 
This is the part that current graphics APIs might already have a good enough answer 
to. 
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Having a true heterogeneous compiler could improve ease-of-use. As we’ve seen, it 
can make invoking a GPU kernel as simple as a function call. 
 
More importantly, it can allow us to confidently share type, constant and function 
declarations between processors, with some level of guarantee that their layouts 
match. 
I’ve seen lots of people try to share structs declarations between HLSL and C++ for 
their constant buffers, only to get bitten by some annoying layout difference. 
We shouldn’t have to put up with that stuff. 
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Of course, there are some challenges to realizing this vision. 
 
First and foremost, I think, is the question of whether this is something that can be 
done in a completely layered fashion, or whether we’d need to engage with the C++ 
standards process. 
My (real) concern is that the real-time graphics community really just needs 
something minimal to let them get their work done, and wouldn’t want to wait on 
each and every platform they target to get caught up with the latest language 
standard. 
Meanwhile, the tendency of the standards body will be toward adding a bunch of 
library constructs that each and every compiler will need to implement (with varying 
quality). 
 
Another challenge (and this one is more directed at the researchers out there) is how 
any of this applies to the graphics pipeline: vertex and fragment shaders, and so forth. 
It is all well and good for me to say that invoking the GPU should be “just a function 
call,” but that isn’t the reality of how graphics programming works today, where there 
is a lot of additional state to contend with. 
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In fact, the entire direction we are taking with the new “modern” graphics APIs is 
towards explicitly exposing command buffers, so that the simplicity of the “just a 
function call” view is hard to align with the reality of the APIs. 
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The next topic on our list of pain points was specializing and composing shader code. 
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As a reminder, the current state of the art is purely text-based approaches, whether 
macros or pasting strings together. 
These approaches are prone to typos, and errors in the generated code, which may 
not be immediately visible (e.g., if a variable defined under one #define is used under 
a different #define, but you almost always enable both together). 
Also, macros have well-known issues such as variable capture. 
 
If we switch to C++ for shaders, when we can also apply templates to these problems, 
but templates have a lot of issues that make them less than ideal for 
metaprogramming. 
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If we look at other languages in development, we can see a trend toward enabling 
metaprogramming by allowing arbitrary user-defined code to be run during 
compilation (the languages list this have a variety of very different mechanisms for 
this). 
 
Similarly, many of these languages are beginning to support *quasiquotation* as a 
way to more easily construct and manipulate code during compile time. 
That sounds like a very fancy word (after all, it comes from the Lisp world), but really 
it just means having first-class language support for constructing and splicing code. 
 
Finally, if we look over at the research world, we see that there is a trend toward 
languages with some kind of extensible syntax, which can be used to construct 
custom domain-specific languages. 
There is a lot of recent work on what are being called “performance-oriented DSLs”. 
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I want to take the time here to draw a concrete connection, and point out that 
domain-specific languages can be an enabler for rapid design-space exploration. 
I’ll use the next few slides to dig into what I mean… 
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As we covered earlier, the state of the art in real-time graphics today is that when you 
are faced with a tough design choice, you try to code as many options as you can and 
pick the best. 
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So how does a DSL help you with that? 
 
Well, in the simplest terms you can think of a DSL as *just* a more compact notation 
for a particular class of workloads. Very often these representations are declarative 
(so they focus on *what* not *how*) 
 
Many performance-oriented DSLs also separate out some of the target-specific 
scheduling information, so that you can apply different schedules to the same 
workload, or have tools automatically explore a space of schedules. 
 
As a result of the compactness of the notation, you get a certain kind of “leverage,” 
where small changes to the input (the workload code, scheduling info, etc.) leads to a 
large change in the code that gets generated as output. 
Because of this leverage, you can more rapidly try out different options that might 
otherwise be very far apart in the design space (in terms of “number of lines of code 
that I need to touch”) 

57 



This is an idea that is paying off in other domains. 
 
The poster child for performance-oriented DSLs is probably the Halide project, for 
developing high-performance image processing kernels. 
Halide allows a simple description of a kernel to be scheduled to produce optimized 
code for a variety of different CPU and GPU architectures. 
This year at SIGGRAPH, we even have a paper that shows how a compiler to 
automatically schedule compositions of different Halide filters, without needing an 
expert programmer to tune each composition. 
 
In the machine learning world, we have systems like TensorFlow, which use a 
declarative representation (in the middle ground between “library” and “DSL”), which 
allows it automatically schedule machine learning workloads across the CPU and GPU 
resources in your machine, or even across a distributed network of machines. 
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Because of these kinds of benefits, we are also seeing research efforts towards 
building frameworks that allow new performance-oriented DSLs to be constructed 
more easily. 
 
There’s the Terra system, which uses Lua to metaprogram a low-level C-like language 
(called Terra). That system has been applied to a variety of problems, resulting in 
multiple SIGGRAPH papers. 
Lua-Terra allows for arbitrary compile-time computation, and uses quasiquotation to 
generate and splice code. 
I should call out that one of my collaborators, Kerry Seitz at UC Davis, has been 
working on extending Terra so that it can also be used for graphics shaders. 
 
There’s the AnyDSL project and the Impala language, which uses a technique known 
as “partial specialization” for metaprogramming; this is similar in its results to 
quasiquotation, but some would argue it is a more lightweight notation. 
 
Finally, the C-Mera project goes right back to the roots of all this metaprogramming 
stuff, and lets you write C/C++ code using a Lispy syntax, so that you can 
metaprogram it using Lisp macros, and then generate ordinary  
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C/C++/GLSL/CUDA/etc. at the end 
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The question, then, for researchers is whether we could apply this same approach to 
real-time graphics. 
 
Is it possibly to build DSLs so that when faced with design choices like these, we can 
rapidly generate and test many options, instead of coding them all from scratch? 
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As a small example, I’d like to point out the Spire project, being presented at 
SIGGRAPH this year, as a small step toward this goal, from some of my collaborators 
at CMU: Yong He and Kayvon Fatahalian. 
 
Spire is an intermedidate representation for surface/material shaders, that allows 
users to explore a space of scheduling choices that can span multiple rates in 
space/time, and even multiple rendering passes. 
For example it is possible, with Spire, to rapidly try out computing particular shading 
terms at reduced resolution using decoupled screen- or object-space shading. 
 
Looking forward, and important challenge is how we scale from a DSL like this for 
surface/material shading, to more complex parts of an engine’s functionality. 
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So, to wrap up… 
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Now is a great time to be looking at languages. There is a lot of innovation going on 
out there, and a lot of new languages projects that arise from developers in various 
fields deciding to scratch their own itch. 
 
Unfortunately, when I survey the work going on out there, I find that there is almost 
no attention being paid to the needs of game and real-time graphics developers. 
Even more to the point: none of these language projects seems to accept the reality 
that we are all programming for heterogeneous architectures, with (at least) a CPU 
and GPU. 
 
So as a small call to action, I will say that it is high time for real-time graphics 
programmers to make our voices heard, and get involved in the evolution of these 
languages. 
Or, if none of them is suited to our needs, it is time for us to start coordinating on 
building the solutions we want for ourselves. 
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I’d like to thank my collaborators at various academic institutions, and my team at 
NVIDIA for their feedback that helped shape this presentation. 
 
As a small parting shot, I’ll direct people to this blog post from Adrian Sampson, 
entitled “Weep for Graphics Programming” which gives a really great example of 
what happens when somebody from another field (in this case, a programming 
language researcher) looks at what we put up with every day. 
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Thanks for your time. 
 
If you’d like to reach me, you can contact me by email at NVIDIA, or on Twitter. 
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